Анекдоты про числа натурального |
2
Таня и простые цифры Таня утверждает, что для каждого натурального n можно, используя только цифры 2, 3, 5 и 7 (возможно, не все из них), записать два n значных числа и их произведение. Докажите, что Таня права. #олимпиады_для_младших_классов #десятичная_запись_числа #конструкции #примеры_и_контрпримеры #арифметика
3
Три недели, три задачи: Исследуем мир чисел и делителей Задача 1: Таня расставила числа 1, 2, 3, 4, 5, 6, 7, 8 в вершинах куба таким образом, что сумма чисел на каждой грани оказалась натуральным числом, имеющим ровно n различных натуральных делителей. Найдите все возможные значения n и докажите, что других нет. #количество_делителей_числа #Таня_решает_задачи #конструкции #примеры_и_контрпримеры #математические_конструкции Задача 2: Когда у Бабы Яги в день её рождения спросили, сколько ей исполнилось лет, она ответила, что её возраст в месяцах записывается только цифрами 0, 1 и 3 (каждая из этих цифр используется хотя бы единожды), причём такое случилось с ней впервые в жизни. Сколько лет исполнилось в тот день Бабе Яге? #делимость #десятичная_запись_числа #делимость_на_12 #задачи_о_возрасте #календарь_и_возраст Задача 3: Назовём натуральное число таёжным, если оно, будучи умноженным на количество своих делителей, даёт факториал натурального числа. Вот первые 7 таёжных чисел: 1, 3, 6, 20, 60, 37800, 43200. а) Верно ли, что единственными таёжными числами, не оканчивающимися нулём, являются 1, 3 и 6? б) Верно ли, что таёжных чисел бесконечно много? #количество_делителей_числа #произведения_и_факториалы #последняя_цифра_числа #их_нет_в_оеis #таёжные_числа